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Figure 1: The robot and user interface used for our experiments. (Left) The simulated Fetch robot rendered in Rviz was used to
perform pick and place operations on tabletop objects. (Right) The terminal interface enabled participants to relay natural
language tasks to the Large Language Model, and examine and approve the LLMs output actions for execution on the robot.

ABSTRACT
Large Language Models have had a notable surge in popularity
in task planning for embodied robots. However, most approaches
have the robot operating in isolation with minimal collaboration
with humans. In this paper, we design a system that enables people
to interact with an intelligent robot. We conduct a human subjects
study to gain insights into the participants’ mental model, and
whether the comprehensive abilities of LLMs encourage the users
to adopt a collaborative role when working with the robot for long-
horizon tasks.

1 INTRODUCTION
Large LanguageModels (LLMs) andVision LanguageModels (VLMs)
have demonstrated noteworthy reasoning capabilities, with re-
search showing their generalization ability across areas of robotics
including Task Planning [3, 4, 7, 15, 19], Policy learning [14], Robot
locomotion [11, 16–18], Generating simulations for robot learning
[23] and user interface for robots [2, 22]. Particularly, internet-scale
models, fine-tuned using robot trajectory data, have demonstrated
promising results in translating high-level tasks into primitive ac-
tions executable by an embodied robot [1, 9, 13].While these models
generate sensible outputs aligned with the robot’s capabilities and
environment, they frequently lead to independent robot actions,
lacking interaction with people and neglecting human feedback
and preferences.

Approaching the problem through the lens of Human-Robot
Interaction, we propose a system to facilitate human interaction
with an intelligent robot. Our system features a simulated Fetch

robot [24] proficient in executing the primitive actions pick and
place that is integrated with an LLM approach [9], which, when
provided with a high-level task and information about the robot’s
environment, produces an action plan encompassing the primitive
actions. Users input their high-level tasks as natural language and,
for each of the actions output by the LLM, are given the option to
either approve it for execution on the robot or select alternative
actions, fostering a collaborative interaction.

We have evaluated our system via a preliminary user study,
where participants supervised the robot’s execution of various
object rearrangement tasks. We specifically studied tasks that re-
quired planning over multiple steps to complete, also known as
long-horizon tasks. In reviewing existing literature on Human-
Robot collaboration and mental model alignment for long-horizon
tasks, we observed that several studies characterized the robot
model using a fixed architecture, assuming compatibility with the
user’s mental model [5, 6, 10, 12, 20, 21, 25]. Given the recent pop-
ularity of LLMs as robot models, our user study delves into the
cognitive processes and mental models of users when engaging
with an embodied robot driven by a LLM.

2 SYSTEM IMPLEMENTATION
Our fully implemented system currently supports user collaboration
with a Fetch Robot [24]. We chose Fetch because of its capabili-
ties as a general-purpose mobile manipulator, allowing it to work
with users on a variety of tabletop manipulation tasks. Our cur-
rent system uses a simulated version of Fetch, rendered in RViz
with the same motions and controls as the real robot, to speed up
experiments and ensure the safety of participants. We connected
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the simulated robot to Moveit! Task Constructor (MTC) [8] to im-
plement the primitive actions and access the robot’s environment
information. We implemented functions to pick up any specified
object and place any picked object on a specified object. The object
information relayed by MTC consists of a comprehensive list of the
object names around the robot, complete with their respective 3D
locations. We hosted the simulated robot and MTC as ROS nodes.

Our system builds on the LLM approach outlined by Gramopad-
hye et al., 2023 [9] to convert a given task and the robot’s environ-
ment information to a series of primitive actions. Upon receiving
the inputs, an LLM scans a pre-collected dataset of (task, action
plan, robot environment) tuples and forms a suitable natural lan-
guage prompt. We then iteratively query the LLM for a step-by-step
action plan for the robot to complete the specified task. For each
step of the action plan, we sample several recommendations from
the LLM, ranked by the LLM’s preference, for the user to choose
from (for more details on the LLM method, see [9]).

We designed a terminal-based user interface to display important
information from MTC and the LLM and cue users for input. The
interface was also run as a ROS node.

3 EXPERIMENT DESIGN
We performed a pilot in-person, between-participants experiment
studying how people interactedwith a LLM-based robot to complete
long-horizon object rearrangement tasks. We recruited 3 partici-
pants from a university campus. We varied the initial size of the
dataset available for our LLM method across participants (either 0,
5 or 20 samples).

3.1 Experiment Setup
The robot had 4 tables in front of it (Figure 2 (Left)), with some
or all of them having one of the objects shown in Figure 2 (Right).
We reset the robot’s environment between the experiment stages
(discussed in §3.2).

Figure 2: Experimental setup details. (Left) The simulated
robot always has 4 tables in front of it. (Right) The 4 types of
objects possible in the robot’s environment are - Big Cube,
Small Cube, Big Cylinder and Small Cylinder.

3.2 Stages
Our experiment consists of three stages with objectives of vary-
ing complexities. We communicated the objective to participants

verbally, using the same phrases for each participant. However,
participants were free to use whatever language they chose when
interacting with the system.

3.2.1 Stage 1: “Swap the objects with the tables”. In the first stage,
two of the tables nearest to the robot had objects randomly placed
on them and the participants were instructed to get the robot to
swap the objects’ locations.

3.2.2 Stage 2: “Stack similar objects together with smaller objects
on the top”. In this stage, all the tables in front of the robot had
different objects placed on them in random order and participants
were instructed to get the robot to pick-up the smaller objects (i.e.,
Small Cube and Small Cylinder) and place them on the larger objects
of the same kind (i.e., Large Cube and Large Cylinder respectively).

3.2.3 Stage 3: “Make a tower of all objects”. This stage was initial-
ized similar to Stage 2 and the participants were instructed to get
the robot to stack all objects on top of each other in any order.

3.3 Hypotheses
This study allowed us to analyse the thought process of participants
interacting with an intelligent robot, capable of understanding long-
horizon tasks. We hypothesized that:

H1: There will be a common pattern to how participants
input the task into the interface.

H2: The participants will view the robot as a collaborator.
H3: The size of the dataset available to the LLMwill be pro-

portional to the robot’s task planning performance.

3.4 Procedure
Our experiment consisted of four phases: (1) Introduction and pro-
cedure explanation, (2) Experiment stages, (3) Exit Questionnaire,
(4) Exit Interview. After receiving an overview of the user inter-
face and the experimental procedure, participants were given a
description of their role as a collaborator. They were also shown a
video of an example interaction with the system with a dummy task.
Each participant was asked to complete all three stages in order
each time. For each stage, our user interface cued the participant
for a natural language task input (high-level instruction). Simul-
taneously, we queried MTC for the robot’s environment. We then
prompted the LLM for the step-by-step action plan and presented
the output of the LLM to the participant and queried them for their
choice of action to be executed by the robot. We first presented
the LLMs top recommended action. If the participant rejected the
action, they were subsequently presented, in order, with all the
recommendations of the LLM and then the predefined set of all
possible actions that the robot could take.

We relayed the user-selected action to MTC for execution, con-
currently displaying the simulated robot carrying out the action
in real time. After the action’s completion, MTC transmitted the
updated object information along with the details of the executed
action to the LLM. The LLM was then prompted for the subsequent
action, and this iterative process continued until the predefined
instruction was completed. Following completion, the instruction,
the generated action plan, and the object information were aug-
mented to the dataset for the LLM. Simultaneously, the participant
was cued for a new instruction to continue the interactive process.
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Figure 3: Comparative analysis of the time taken to complete
each stage under three different initial dataset sizes of 0, 5
and 20.

For each stage, we recorded the time elapsed, the number of
instructions used to complete the stage, and the actions chosen
by the participant. After the experiment, participants filled out a
survey with 7-point Likert-style questions and participated in a
semi-structured interview regarding their experience.

4 OBSERVATIONS
While our experiment currently contains too few participants to
provide definitive conclusions, below we review our current data.
We analysed the time elapsed, the number of instructions used
to complete the stages and the actions chosen by the participant
to determine if the size of dataset available to the LLM affects its
performance.

4.0.1 Time taken: Figure 3 shows the time taken to complete the
stages under varying data settings. The findings suggest a poten-
tially complex relationship between the quantity of data provided
to the LLM, the input instruction, and the time efficiency.

4.0.2 Number of instructions per stage: Participants were free to
use multiple input instructions to complete a stage. However, so
far all participants have used just one initial instruction for every
stage. Our survey data suggests that when interacting with the
robot, participants’ goal was to complete the task (M = 6.33, SD =
0.577) rather than to teach the robot (M = 1, SD = 0).

4.0.3 Action chosen by participants: We observed varied response
patterns from the participants in relation to the dataset size (Figure
4). We see a possible trend indicating a general increase in the
tendency to approve the robot’s proposed actions with increasing
dataset size and stage complexity.

Our current observations in terms of our hypotheses are:

H1: We observed varied responses from participants for the input
instruction. The only pattern we could observe was the participants’
choice to use only one input instruction for each stage. Therefore,
our current data does not support H1. In their interviews, partici-
pants mentioned different strategies for entering the instructions.
Some participants mentioned specifying the actions to follow - “I
did sub tasks such as move objects to complete the whole task, but
then realized that it needed to broken down even further”, whereas

Figure 4: Distribution of participant’s choice of action in
terms of ‘Top recommendation’ (i.e. the action most recom-
mended by the LLM), ‘Another recommendation’ (i.e. an ac-
tion recommended by the LLM, but not the top recommen-
dation), and ‘Self specified’ (i.e. action independent of the
LLM recommendation) across three dataset sizes for each
stage. The percentages reflect participant approval rates of
the robot’s action selection.

some entered a description of the result after task completion - “I
mostly tried to communicate what the end result should look like
rather than what the robot should do”. Participants also mentioned
that their opinion of the robot and its abilities changed over time (M
= 4.66, SD = 2.309) and that they would employ a different strategy
if they repeated the experiment (M = 5.66, SD = 0.577).

H2: Participants’ responses were ambiguous to whether they con-
sidered the robot to be a collaborator (M = 4, SD = 1.732) or a tool
(M = 5, SD = 1.732), leaning towards the latter. They were positive
that giving the robot instructions to perform is a good way to col-
laborate with a robot (M = 6.33, SD = 1.154), but felt that the robot
needed them (M = 5, SD = 1.732) and didn’t think that the robot
unnecessarily asked for their approval (M = 1, SD = 0). In the inter-
views, participants also noted that the object rearrangement tasks
in the experiment were very simple. Developing more complicated
tasks, that would require longer action plans to complete, might
give participants more opportunities to interact with the robot and
view it as a collaborator.

H3: From our tracked metrics, especially the actions chosen by
participants (§4.0.3), we are finding some preliminary support for
H3 that more data might improve the LLMs task planning for the
latter stages, although we must collect additional data and perform
appropriate inferential analysis to fully test this hypothesis.

5 CONCLUSION
Our system and user study allowed us to take steps in understanding
people’s thought process when collaborating with an LLM backed
robot on long-horizon tasks. From our pilot experiment, we ob-
served a lot of variability in people’s interaction with the robot. We
found some preliminary support for H3, but need future work to
dive deeper into each hypothesis.

For our future work, we plan to redesign the experiment to
include more complicated real-world collaborative tasks such as
assisting a chemist with a chemistry experiment or cooking, and
collect additional data with more participants.
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